Chuyển đến nội dung chính

Lý thuyết cơ bản về bơm

Atmospheric Pressure

Atmospheric Pressure

@ Sea Level

Absolute Pressure

The sum of the available atmospheric pressure and the gage pressure in the pumping system

Absolute Pressure (PSIA) = Gauge Pressure + Atmospheric Pressure

Absolute P. = 150 PSIG (Gauge P.) + 14.7 PSI (Atmospheric P.) = 164.7 PSIA

Vacuum

The full or partial elimination of Atmospheric Pressure

Atmospheric Pressure on the Moon = 0 = Full Vacuum

1 Inch Hg Vacuum = 1.13 Ft of Water

Specific Gravity

Specific Gravity is the ratio of the weight of anything to the weight of water.

Specific Gravity of HCl = (Weight of HCl)/(Weight of Water) = (10.0)/(8.34) = 1.2

Pressure and Liquid Height Relationship (Head)

1 PSI = 2.31 Ft of Water

Pressure, Liquid Height, & Specific Gravity Relationship

Pressure (PSI) = Head (FT) x Specific Gravity (SG) / 2.31

Example - Water - 231Ft x 1.0 / 2.31 = 100 PSI

Example - HCL - 231 Ft x 1.2 / 2.31 = 120 PSI

Example - Gas - 231 Ft x .80 / 2.31 = 80 PSI

Vapor Pressure

The pressure pushing against atmospheric pressure on liquids at elevated temperatures.

Suction Head

A Suction Head exists when the liquid is taken from an open to atmosphere tank where the liquid level is above the centerline of the pump suction, commonly known as a Flooded Suction.

Total Dynamic Head

Total Dynamic Head (TDH) = Elevation(ft) + Friction(ft)

Centrifugal Pump Components

The two main components of a centrifugal pump are the impeller and the volute. The impeller produces liquid velocity and the volute forces the liquid to discharge from the pump converting velocity to pressure. This is accomplished by offsetting the impeller in the volute and by maintaining a close clearance between the impeller and the volute at the cut-water. Please note the impeller rotation. A centrifugal pump impeller slings the liquid out of the volute. It does not cup the liquid.

Pump Performance Curve

A Pump Performance Curve is produced by a pump manufacturer from actual tests performed and shows the relationship between Flow and Total Dynamic Head, the Efficiency, the NPSH Required, and the BHP Required.

Higher Head = Lower Flow Lower Head = Higher Flow

Lower Flow = Lower Horsepower Higher Flow = Higher Horsepower

Based on Water SG 1.0

Capacity

A Centrifugal Pump is a variable displacement pump. The actual flow rate achieved is directly dependent on the Total Dynamic Head it must work against.

The flow capacity of a centrifugal pump also depends on three (3) other factors:

1 Pump Design

2 Impeller Diameter

3 Pump Speed

Affinity Laws

The performance of a centrifugal pump is affected by a change in speed or impeller diameter.

Q = Capacity (GPM) D = Impeller Diameter N= Speed(RPM)

H = Total Dynamic Head(Feet) BHP = Brake Horsepower

The affinity law for a centrifugal pump with the impeller diameter held constant and the speed changed:

Flow: Q1 / Q2 = N1 / N2

Example: 100 / Q2 = 1750/3500 Q2 = 200 GPM

Head: H1/H2 = (N1) x (N1) / (N2) x (N2)

Example: 100 /H2 = 1750 x 1750 / 3500 x 3500 H2 = 400 Ft

Horsepower (BHP):

BHP1 / BHP2 = (N1) x (N1) x (N1) / (N2) x (N2) x (N2)

Example: 5/BHP2 = 1750 x 1750 x 1750 / 3500 x 3500 x 3500 BHP2 = 40

The affinity law for a centrifugal pump with the speed held constant and the impeller diameter changed:

Flow: Q1 / Q2 = D1 / D2

Example: 100 / Q2 = 8/6 Q2 = 75 GPM

Head: H1/H2 = (D1) x (D1) / (D2) x (D2)

Example: 100 /H2 = 8 x 8 / 6 x 6 H2 = 56.25 Ft

Horsepower (BHP):

BHP1 / BHP2 = (D1) x (D1) x (D1) / (D2) x (D2) x (D2)

Example: 5/BHP2 = 8 x 8 x 8 / 6 x 6 x 6 BHP2 = 2.1

Brake Horsepower

BHP = Flow(GPM) X TDH(FT) x SG /3960xEFFICIENCY(%)

Example: BHP = (100 GPM) x (95 Ft) x (1.0) / 3960 x .6 BHP = 4.0

Calculating Total Dynamic Head (TDH)

Flooded Suction Application

TDH = Total Discharge Head - Total Suction Head

Total Suction Head = Static - Friction

Total Discharge Head = Static + Friction

Suction Lift Application

TDH = Total Discharge Head + Total Suction Lift

Total Suction Lift= Static + Friction

Total Discharge Head = Static + Friction

Total Dynamic Head = Total Discharge Head + Total Suction Head

System Head Curve

To Calculate a System Head Curve several points must be chosen to calculate friction losses on both the suction and discharge sides of the pump at various flow rates. The static suction head/lift and the static discharge head remain constant.

Net Positive Suction Head

Net Positive Suction Head Required (NPSHR)

The net positive suction head required is a function of the pump design at the operating point on the pump performance curve.

Net Positive Suction Head Available (NPSHA)

The net positive suction head available is a function of the pump suction system.

The Net Positive Suction Head is the absolute total suction head in feet.

The NPSH available in a flooded suction system is:

Atmospheric Pressure (-) Vapor Pressure (+) Liquid Height (-) Friction in the Suction Line.

The NPSH available in a suction lift system is:

Atmospheric Pressure (-) Vapor Pressure (-) Liquid Ht. (-) Friction in the Suction Line.



If the NPSHA <>

Cavitation

Cavitation may occur in two different forms:

Suction Cavitation

Suction Cavitation occurs when the pump suction is under a low pressure/high vacuum condition where the liquid turns into a vapor at the eye of the pump impeller. This vapor is carried over to the discharge side of the pump where it no longer sees vacuum and is compressed back into a liquid by the discharge pressure. This imploding action occurs violently and attacks the face of the impeller. An impeller that has been operating under a suction cavitation condition has large chunks of material removed from its face causing premature failure of the pump.

Discharge Cavitation

Discharge Cavitation occurs when the pump discharge is extremely high. It normally occurs in a pump that is running at less than 10% of its best efficiency point. The high discharge pressure causes the majority of the fluid to circulate inside the pump instead of being allowed to flow out the discharge. As the liquid flows around the impeller it must pass through the small clearance between the impeller and the pump cutwater at extremely high velocity. This velocity causes a vacuum to develop at the cutwater similar to what occurs in a venturi and turns the liquid into a vapor. A pump that has been operating under these conditions shows premature wear of the impeller vane tips and the pump cutwater. In addition due to the high pressure condition premature failure of the pump mechanical seal and bearings can be expected and under extreme conditions will break the impeller shaft.

Suction Cavitation & Discharge Cavitation are extremely damaging to pump components.


SCCK.TK (www.pumprite.com)

Pressure, Head, and Friction Loss

Use Pressure to Measure Height

Pressure is a useful way to determine head - both Static Head (in a delivery pipeline) and Total Dynamic Head, in a pipeline being pumped. It is also a good diagnostic tool for checking the pumping system after it is installed.





There is a direct relationship between Head and Pressure*.

Pressure (kPa) = Height (Mts) x Gravity (m/s2)

The value for Gravitational Acceleration at sea level is 9.81 Metres per second per second. For convenience we use the number 10. So the formula to calculate pressure can be re-stated to calculate the height of a column of water (or the maximum height of a pipeline holding water). The formula is:-







Pressure (kPa)

Height (Mtrs) = __________________

10

If the pressure in a static pipeline (that is the pipe is full with water, but not flowing) is say 400 KiloPascals (kPa), the height of the water in the line is 40 Metres. If the pressure is read while the water is flowing in the pipeline then the pressure will indicate Total Dynamic Head. The difference between the flowing pressure and the static pressure, is the Friction Loss in the pipeline, at that flow rate. This number will increase if the flow rate increases.

Some useful conversions are :-

KiloPascals
KPa

Pounds per Sq Inch (PSI)

Metres of Water

Feet of Water

1

0.145

0.102

0.335

6.895

1

0.703

2.31

9.810

1.420

1

3.28

2.984

0.433

0.305

1

* The real formula actually includes Density, but as we usually pump water and the density if water is 1, we ignore this part of the equation.

Related Posts by Categories



Nhận xét

Bài đăng xem nhiều

Dung sai và các chế độ lắp ghép bề mặt trụ trơn [pdf]

Viết bài: Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Ví dụ bạn cần gia công 1 trục bơm ly tâm 1 cấp, khi lên bản vẽ gia công thì cần dung sai gia công, việc chọn dung sai gia công thì căn cứ vào kiểu lắp ghép như vị trí lắp vòng bi: đối với vòng trong vòng bi với trục bơm thì sẽ lắp theo hệ thống lỗ (vì kích thước vòng bi không thay đổi được), nên việc lắp chặt hay trung gian là do bạn lựa chọn dựa trên các tiêu chí ở dưới. Còn thân bơm với vòng ngoài vòng bi thì lắp theo hệ trục (xem vòng ngoài vòng bi là trục). Bạn cũng cần lưu ý việc lắp chặt hay trung gian có thể ảnh hưởng đến khe hở vòng bi khi làm việc nên cần cân nhắc cho phù hợp với điều kiện vận hành, loại vòng bi (cùng loại vòng bi, vòng bi C2, C3 có khe hở nhỏ hơn C4, C4 nhỏ hơn C5). Nếu bạn đang dùng C3, lắp trung gian mà chuyển sang lắp chặt có thể làm giảm tuổi thọ vòng bi vì khe hở giảm hoặc không đáp ứng yêu cầu làm việc. Sơ đồ miền dung sai Miền dung sai Miền dung sai được tạo ra bằng cách phối hợp giữa  1...

Tải miễn phí phần mềm triển khai hình gò

Phần mềm này sẽ giúp các bạn đưa ra bản vẽ triển khai gia công đầy đủ và chính xác, cho phép các bạn xuất ra bản vẽ Autocad để tiện hơn cho việc tính toán, in ấn , quản lý. [MF] —–  nhấn chọn để download Lưu ý: sau khi giải nén và cài đặt thì chép pns4.exe (có sẵn sau khi giải nén) đè lên file pns4.exe mới. Phiên bản này có đầy đủ kích thước với các kiểu ống và help. Nên chạy run as administrator trong win 7. Xin chào bạn!  Nếu bạn đang thích trang web của chúng tôi và thấy các bài viết của chúng tôi hữu ích, chúng tôi rất mong nhận được sự ủng hộ của bạn. Với sự giúp đỡ của bạn, chúng tôi có thể tiếp tục phát triển tài nguyên và cung cấp cho bạn nội dung có giá trị hơn nữa.  Cảm ơn bạn đã ủng hộ chúng tôi. Nguyễn Thanh Sơn

Chọn vật liệu chế tạo bánh răng và xử lý nhiệt

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Điều cần thiết là chọn vật liệu và xử lý nhiệt thích hợp phù hợp với ứng dụng dự kiến ​​của bánh răng. Vì các bánh răng được ứng dụng cho nhiều mục đích sử dụng khác nhau, chẳng hạn như máy móc công nghiệp, thiết bị điện/điện tử, đồ gia dụng và đồ chơi, và bao gồm nhiều loại vật liệu, nên chúng tôi muốn giới thiệu các vật liệu điển hình và phương pháp xử lý nhiệt của chúng. Hộp số 1. Các loại vật liệu chế tạo bánh răng a) S45C (Thép cacbon dùng cho kết cấu máy): S45C là một trong những loại thép được sử dụng phổ biến nhất, chứa lượng carbon vừa phải ( 0,45% ). S45C dễ kiếm được và được sử dụng trong sản xuất bánh răng trụ thẳng, bánh răng xoắn, thanh răng, bánh răng côn và bánh răng trục vít bánh vít . Xử lý nhiệt và độ cứng đạt được: nhiệt luyện độ cứng Không < 194HB Nhiệt luyện bằng cách nung nóng, làm nguội nhanh (dầu hoặc nước) và ram thép, còn gọi là quá...

Khe hở mặt răng (backlash) và khe hở chân/đỉnh răng (root/tip clearance)

Viết bài : Nguyễn Thanh Sơn, bản quyền thuộc về www.baoduongcokhi.com Các thông số cơ bản của bánh răng Về những thông số của bánh răng, có rất nhiều thông số để phục vụ cho quá trình gia công, thiết kế và lắp đặt máy. Tuy nhiên có một số thông số cơ bản bắt buộc người chế tạo cần phải nắm rõ, gồm: Đường kính Vòng đỉnh (Tip diameter): là đường tròn đi qua đỉnh răng, da = m (z+2) . Đường kính Vòng đáy (Root diameter): là vòng tròn đi qua đáy răng, df = m (z-2.5) . Đường kính Vòng chia (Reference diameter): là đường tròn tiếp xúc với một đường tròn tương ứng của bánh răng khác khi 2 bánh ăn khớp với nhau, d = m.Z   Số răng: Z=d/m Bước răng (Circular Pitch): là độ dài cung giữa 2 profin của 2 răng kề nhau đo trên vòng chia, P=m. π Modun: là thông số quan trọng nhất của bánh răng, m = P/π ; ha=m. Chiều cao răng (whole depth): là khoảng cách hướng tâm giữa vòng đỉnh và vòng chia; h=ha + hf=2.25m, trong đó ha=1 m, hf=1,25 Chiều dày răn...

Tặng ebook: Root Cause Failure Analysis (Phân tích tìm nguyên nhân hư hỏng)

Để chào đón phiên bản web mới, baoduongcokhi.com gửi tặng các bạn ebook hay: Root Cause Failure Analysis. Ebook contents: Part I: Introduction to Root Cause Failure Analysis Chapter 1 Introduction Chapter 2 General Analysis Techniques Chapter 3 Root Cause Failure Analysis Methodology Chapter 4 Safety-Related Issues Chapter 5 Regulatory Compliance Issues Chapter 6 Process Performance   Part II: Equipment Design Evaluation Guide Chapter 7 Pumps Chapter 8 Fans. Blowers, and Fluidizers Chapter 9 Conveyors Chapter 10 Compressors Chapter I I Mixers and Agitators Chapter 12 Dust Collectors Chapter 13 Process Rolls Chapter 14 Gearboxes/Reducers Chapter 15 Steam Traps Chapter 16 Inverters Chapter 17 Control Valves Chapter 18 Seals and Packing

Cách kiểm tra và đánh giá vết ăn khớp (tooth contact) của cặp bánh răng

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Hộp số với cặp bánh răng nghiêng Tooth contact là một trong những yếu tố quan trọng trong việc đảm bảo hoạt động hiệu quả và độ bền của bánh răng Mục đích Các bánh răng phải có tải trọng phân bố đều trên bề mặt răng khi làm việc ở điều kiện danh định.  Nếu tải trọng phân bố không đều, áp lực tiếp xúc và ứng suất uốn tăng cục bộ , làm tăng nguy cơ hư hỏng.  Gear Run Out của bánh răng là gì? cách kiểm tra Bánh răng và hộp số, phần 3: Phân tích dầu tìm nguyên nhân hư hỏng bánh răng. Bánh răng và Hộp số, phần 2: Các loại hộp số, bôi trơn, hư hỏng thường gặp Bánh răng và hộp số, phần 1: Các loại bánh răng (types of gears) Để đạt được sự phân bố tải đều, bánh răng cần có độ chính xác trong thiết kế, sản xuất, lắp ráp và lắp đặt các bộ phận của hộp số. Các yếu tố này được kiểm tra, test thử nghiệm và kiểm tra tại xưởng của nhà sản xuất thiết bị. Lắp đặt đúng cách tại hiện trường là bước cuối cùng để ...

Phương pháp kiểm tra hạt từ (Magnetic Particle Testing)

Viết bài: Thanh Sơn, bản quyền thuộc về  www.baoduongcokhi.com Kiểm tra hạt từ (Magnetic Particle Testing MPT/MT hay Magnetic Particle Inspection - MPI) là một phương pháp kiểm tra không phá hủy nhằm phát hiện các khuyết tật trên bề mặt hoặc ngay bên dưới bề mặt kim loại. Đây là kỹ thuật nhanh và đáng tin cậy để phát hiện và định vị các vết nứt bề mặt. Nguyên lý MPT: Từ thông rò trên bề mặt không liên tục Nguyên lý Kiểm tra hạt từ (MT) dựa trên tính chất từ tính của vật liệu sắt từ. Khi một thành phần sắt từ bị từ hóa (được thực hiện bằng cách cho dòng điện chạy qua nó hoặc bằng cách đặt nó trong một từ trường mạnh), bất kỳ sự không liên tục hoặc khuyết tật nào có trong vật liệu sẽ gây ra rò rỉ từ thông (như vết nứt  sẽ tạo ra lực cản đáng kể đối với từ trường, tại những điểm không liên tục như vậy, từ trường thoát ra trên bề mặt của mẫu thử (từ thông rò rỉ). Xem thêm:  Kiểm tra thẩm thấu PT (Penetrant Testing) Kiểm tra siêu âm bên trong lòng ống ILI là gì? Rò rỉ từ thông...

Hướng dẫn chi tiết Phương pháp Cân Tâm RIM & FACE

Sau đây tôi sẽ đăng lần lượt nội dung bài HD cách cân chỉnh bằng PP RIM & FACE. Đây là HD mang tính lý thuyết giúp bạn hiểu sâu hơn về PP này. Bài viết này tôi phải đánh máy hơi dài nên bài viết sẽ cập nhật tiếp sau mỗi ngày. Phương pháp này biểu diễn trên tờ giấy biểu đồ, các giá trị đo, tính toán và kết quả lượng shim thêm bớt và lượng dịch chuyển máy được thể hiện hoàn toàn trên giấy: (click lên hình để xem rõ hơn) KẾT QUẢ Sheet 1 Sheet2 Sheet 3 Kết quả biểu diễn trên giấy của phương pháp cân tâm RIM & FACE Khái niệm về PP RIM & FACE Phương pháp cân chỉnh RIM & FACE dùng biểu đồ để minh họa là một kỹ thuật mà cho thấy quan hệ vị trí của hai hoặc hơn hai đường tâm trục trên một tờ giấy biểu đồ. Từ biểu đồ này có thể tính toán ra được số lá căn (shim) cần thay đổi thêm vào hay bớt đi ở các chân máy và cũng như lượng dịch chuyển máy để đạt được độ đồng tâm đúng theo yêu cầu. QUY ƯỚC Để thực hiện các bước cân tâm này, chúng ta phải theo một số quy ước sa...

Truyền động trục các-đăng, xích và dây curoa: Đâu là lựa chọn tối ưu?

Truyền động trục các-đăng, nhông xích và dây curoa - Mỗi loại hệ truyền động đều có ưu và nhuợc điểm riêng, tùy vào nhu cầu sử dụng mà ta có thể chọn cho mình hệ truyền động thích hợp nhất. Khi tìm hiểu về môtô, ta hầu như chỉ để ý đến thiết kế xe và sức mạnh động cơ mà hầu như quên đi một bộ phận rất quan trọng khác trên xe. Hệ thống quan trọng mà tôi đang muốn nói đến ở đây là hệ thống truyền đông. Khác với ô tô vốn chỉ có một lựa chọn hệ thống truyền động là trục các đăng. Mô tô có đến 3 lựa chọn hệ thống truyền động: Nhông xích, trục các đăng và dây curoa . Trong ba hệ truyền động nói trên thì nhông xích hiện đang là loại được sử dụng phổ biến và rộng rãi nhất ở mọi hãng xe và dòng xe. Trục các đăng cũng là một lựa chọn, nhưng ít phổ biến hơn. Còn lại là dây curoa vốn chỉ thấy ở một số mẫu xe nhất định. Vậy tại sao hệ truyền động nhông xích lại được sử dụng rộng rãi nhất? Để trả lời câu hỏi này, ta phải đi sâu vào ưu và nhược điểm của mỗi loại hệ thống. Hệ thống truyền động nhông x...

Giới thiệu về Tua bin khí (Gas Turbine)

Turbine khí, còn được gọi là tuốc bin khí  (Gas Turbine) , là một loại động cơ nhiệt được sử dụng để chuyển đổi nhiệt năng thành năng lượng cơ học thông qua quá trình đốt cháy khí và chuyển động quay turbine. Một máy phát điện Generator kéo bởi một tuốc bin khí. Đây là tổ hợp của máy nén khí + tuốc bin khí + máy phát điện. Không khí được hút vào và nén lên áp suất cao nhờ một máy nén. Nhiên liệu cùng với không khí này sẽ được đưa vào buồng đốt để đốt cháy. Khí cháy sau khi ra khỏi buồng đốt sẽ được đưa vào quay turbine. Vì thế nên mới gọi là turbine khí. Năng lượng cơ học của turbine một phần sẽ được đưa về quay máy nén, một phần khác đưa ra quay tải ngoài, như cách quạt, máy phát điện... Đa số các turbine khí có một trục, một đầu là máy nén, một đầu là turbine. Đầu phía turbine sẽ được nối với máy phát điện trực tiếp hoặc qua bộ giảm tốc. Riêng mẫu turbine khí dưới đây có 3 trục. Trục hạ áp gồm máy nén hạ áp và turbine hạ áp. Trục cao áp gồm máy nén cao áp và turbine cao áp. Trụ...